
Software Engineering Technology

November 2002 www.stsc.hill.af.mil 9

Being agile is a declaration of priorities,
prioritizing for project maneuverabili-

ty with respect to shifting requirements,
shifting technology, and shifting under-
standing of the situation. Other priorities
that might override agility include pre-
dictability, cost, schedule, process-accred-
itation, or use of specific tools.

Most managers run a portfolio of
projects having a mix of those priorities
and need to mix their strategies to suit.
The question at hand is how a person can
borrow from the set of agile practices to
fit the plan-driven and cost-sensitive pro-
grams.

Part one of this article [1] introduced
two phrases:
1. Money-for-information (MFI) issues are

those on which the team can spend
money now to obtain information that
puts them in a better situation for later
in the project. Work-plan breakdown
structures, system performance under
load, and user reaction to system
design are MFI issues.

2. Money-for-flexibility (MFF) issues are
those on which the team cannot pos-
sibly obtain information now to put
them in a better situation later. The
better strategy is to spend money on
making the change easier later.
Movements in the stock market,
emerging standards, and staff conti-
nuity are MFF issues.
Many of the differences between agile

methodologies and cost- and plan-driven
approaches are in deciding which issues
are MFF or MFI issues, and what the best
allocation of resource is for each.

A plan-driven team might decide that
the project plan is predictable, and a good
MFI strategy is to spend energy now to
make those predictions. An agile team
might decide that the project plan funda-
mentally cannot be resolved past a very
simple approximation, and therefore a

MFI strategy is a waste of money.
Instead, they adopt a MFF approach,
which involves making many coarse-
grained plans over the course of the proj-
ect.

Both teams might agree that the ques-
tion of system performance under load is
an important MFI issue, and both might
agree to spend money early to build a sim-
ple system simulator and load generator to
stress test the design.

Ten Principles
The following 10 principles have shown
themselves useful in setting up and run-
ning projects:
1. Different projects need different

methodology trade-offs.
2. A little methodology does a lot of

good; after that, weight is costly.
3. Larger teams need more communica-

tion elements.
4. Projects dealing with greater potential

damage need more validation elements.
5. Formality, process, and documentation

are not substitutes for discipline, skill,
and understanding.

6. Interactive, face-to-face communica-
tion is the cheapest and fastest channel
for exchanging information.

7. Increasing feedback and communica-
tion reduces the need for intermediate
work products.

8. Concurrent and serial development
exchange development cost for speed
and flexibility.

9. Efficiency is expendable in non-bottle-
neck activities.

10. Sweet spots speed development.
The first seven principles were

addressed in the October issue of
CrossTalk. I pick up the discussion
here with Principle No. 8.

8. Concurrent and Serial
Development Exchange
Development Cost for
Speed and Flexibility
On a predictable project, the project coor-
dinator can arrange for each work special-
ist to show up at just the right moment,
perform the needed work, and leave. Such
scheduling, common in the construction
and book publishing industries, minimizes
salary cost in exchange for extending
elapsed time (see Figure 1, Serial
Development). The hazard is that a sur-
prise might show up in an already-com-
pleted task forcing the previous task item
to restart, in which case neither time nor
cost is minimized.

Concurrent development runs teams in
parallel, even when they have dependen-
cies between them [2]. The teams will
make and change decisions as they gain
information, causing the other teams some
rework. With careful management of their
dependencies, the teams can complete the

Learning From Agile Software Development – Part Two

Alistair Cockburn
Humans and Technology

This two-part article compares agile, plan-driven, and cost-sensitive software development approaches based on a set of proj-
ect organization principles, extracting from them ideas for pulling agile techniques into cost- and plan-driven projects. Part
one, which appeared in October’s CrossTalk, described how the different teams make trade-offs of money for informa-
tion or for flexibility, and presented the first seven of 10 principles for tuning a project to meet various prioritization of cost,
correctness, predictability, speed, and agility. This month, part two presents the last three principles, then pulls the material
together for actions that plan-driven and cost-sensitive project teams can use to improve their strategies and hedge against sur-
prises.

Serial
Development

Concurrent
Development

Requirements
Design
Program
Test

Requirements
Design
Program
Test

Figure 1: Serial Development vs. Concurrent
Development [2]

Note: Serialized development takes longer but
costs less than concurrent development.

“The most important
agile value for the

cost-sensitive project
leader to adopt is

customer collaboration.”

Software Engineering Technology

10 CROSSTALK The Journal of Defense Software Engineering November 2002

final work sooner even though their salary
costs are higher (see Figure 1, Concurrent
Development). Effective concurrent
development demands that communica-
tion between people is fast, rich, and inex-
pensive (as discussed in principles 6 and 7).
The hazard in concurrent development is
that if work is started too early, rework
costs dominate the project.

Serial and concurrent development
have opposing characteristics. Cost-sensi-
tive projects should use serial development
where they can, while projects sensitive to
shifting requirements benefit more from
concurrent development

Agile project teams almost always use
concurrent development assuming a sig-
nificant number of surprises will arise dur-
ing development. The close communica-
tion needed for effective concurrent devel-
opment also lets them respond to late-
breaking changes effectively.

9. Efficiency Is Expendable in
Non-Bottleneck Activities
Effective concurrent development
requires calculating the moment at which
to start a downstream activity. Goldratt’s
process theory [3] and theory of con-
straints [4] provide advice here.

Suppose that one requirements gather-
er feeds information to five designers, who
in turn feed their results to a single data-
base analyst (DBA, see Figure 2). It is clear
that the DBA will not be able to keep up
with the work (and rework). Prudence
insists that the designers get their work to
a complete and stable state before passing
it to the DBA.

Figure 3 illustrates this idea. The verti-
cal axis indicates how complete and stable
each group’s work is. Completeness refers
to how much they have done, and stability
refers to how unlikely they are to make
changes. For simplicity, the figure illus-
trates them as joint: The work becomes
more complete and more stable over time,
shown in an S-type of curve. For each
curve, the solid downward-arrow indicates
at what point a dependent activity gets ini-
tiated.

If the designers take work from a sin-
gle requirements gatherer as in Figure 2,
they can start work on their assignments
when the requirements are only slightly
complete and stable and still handle the
consequential rework. Figure 3 shows the
trigger event (the solid vertical arrow from
requirements to design) occurring close to
the left, while the requirements are not yet
very complete or very stable. This figure
also shows information continuing to pass
from the requirements gatherer to the
designers as the requirements work pro-
gresses. Once requirements become com-
plete and stable, it will not take long to
finalize work. The designers can complete
the extra rework because there are five of
them to one requirements gatherer.

The DBA, having no excess capacity,
needs to be handed work that is more
complete and more stable. The solid right-
most vertical arrow in Figure 3, which
shows when the DBA’s work gets initiated,
starts higher on the designer’s complete-
ness and stability scale.

Note that in Figure 3 each designer
uses much more time than the DBA. This
is appropriate, since there is only one DBA
for five designers.

The principle says that rework is an
expendable commodity everywhere except
at the bottleneck station (the DBA, in the
above example). Rework can be expended
to improve a design, to investigate multiple
designs, or to get a head start on a down-
stream activity. Applying this principle to
different circumstances produces different
optimal project strategies [2].

Although this is the most complicated
principle presented so far, I find that most
project leaders have, in fact, used this prin-
ciple in responding to standard project
pressures through common sense and
intuition.

10. Sweet Spots Speed
Development
The ideal project uses dedicated, experi-
enced people who sit within earshot of
each other; use automated regression tests;
have easy access to the users; and deliver

running, tested systems to those users
every month or two. Such a project is
clearly in a better position to complete suc-
cessfully than one missing those character-
istics. The surprise is that sponsoring exec-
utives do not pay more attention to these
important success factors.

When the team cannot hit one of
those sweet spots, then they need to invent
a way to get closer to it. The farther away
they are, the more difficult the project
becomes. Here are six sweet spots:
1. Dedicated Developers. There is a

large emotional and mental cost to a
person having to switch between mul-
tiple assignments [2, 5]. In my project
reviews, I find that once people get
interrupted at the rate of about three
times per day, they stop even trying to
focus on their main assignment and
simply wait for the next interruption to
happen. One senior project manager
reported that he simply does not count
as productive staff anyone assigned
less than half-time to the project.

2. Experienced Developers. Experi-
enced developers know the domain,
they know the technologies or how to
adopt them, and they know their com-
puter science material. They move at
multiple times the speed of their slow-
er colleagues.

3. Small Collocated Team (a conse-
quence of principles 6 and 7). Two to
eight people sitting in the same room
can ask each other questions without
raising their voices. They are aware of
when others are available to answer
questions. They overhear relevant con-
versations without pausing in their
work. They keep the design ideas and
project plans on the board in ready
sight and share information faster. The
developers I have interviewed uni-
formly say that while the environment
can get noisy, they have never been on
a more effective project than when a
small team sat in the same room.

Technology can mitigate the situ-
ation somewhat. One project team
installed cameras on every workstation
to display the image of the other peo-
ple on the project in their various
offices [6]. This gave them a sense of
each other’s presence, and indicated
when people were not at their worksta-
tions or not to be disturbed with a
question. They used online chat boxes
to fire off and get answers to the many
small questions that constantly arise.
They were creative in mimicking the
sweet spot in an otherwise unsweet sit-
uation.

4. Automated Regression Tests. With

DBA
Requirements

Gatherer

Designer

Designer

Designer

Designer

Designer
Figure 2: The Database Analyst (DBA) Bottlenecking Five Designers [2]

Learning From Agile Software Development – Part Two

November 2002 www.stsc.hill.af.mil 11

automated regression unit and accept-
ance tests, the developers can revise
the code base and retest the entire sys-
tem at the push of a button. Teams
who have such tests report that they
freely replace and improve awkward
modules. They also report relaxing
more on the weekends since they will
run the tests on Monday morning and
discover if someone has changed their
system out from under them. These
tests improve both the design quality
and the programmers’ quality of life.

Experienced developers spend
quite some effort to minimize the
amount of the system not amenable to
automated regression tests.

5. Easy Access to Users. Having a cus-
tomer or usage expert available at all
times means that the feedback cycle
from nominated solution to evaluated
idea is much shorter, often in the range
of minutes to a few hours. The devel-
opment team gains a deeper under-
standing of the users’ needs and habits
and makes fewer mistakes nominating
ideas. It also means that more ideas can
be tried, allowing for a better final
product.

Missing this sweet spot lowers the
likelihood of making a really useable
product. Teams unable to have a usage
expert available at all times have substi-
tuted weekly sessions with the users,
studying the user community in depth
before and during the project, using
surveys, or using friendly alpha-test
groups.

6. Short Increments and Frequent
Delivery to Real Users. There is no
substitute for rapid feedback, both on
the development process and the prod-
uct itself. Some colleagues say that
even one month is an intolerably long
time. However, there is also a cost to
deploying a product, which makes this
a MFI proposition (discussed in the
previous article).

With short increments, the
process itself gets tested and can be
repaired quickly, and the requirements
for the product can be tested and var-
ied quickly.

Projects that cannot deliver to an
end user every few months should
integrate a full build every few months
and pretend as though it were deliv-
ered. This way, they exercise every part
of the development process.

Differences Between
Approaches
At this point, we have listed the issues that

bear on how cost- and plan-driven projects
can borrow from agile approaches. Some
cause intrinsically different responses;
other responses are more a matter of
habit.

Intrinsic Differences
Statistics vs. heuristics. Some project
leaders believe software development is a
statistically controllable process; others do
not. Their resulting strategies are incom-
patible. This is one of the places where
friction arises between agile and plan-driv-
en project leaders.

Individuals and interactions vs.
processes and tools. Some leaders
believe that with the right process, they can
become immune to the turnover of key
people. Others believe that no process can
offer that immunity; the heart of good
software development will always reside in
the individual people on the project. As
with the statistical approach, we are more
likely to find process-centric leaders run-
ning plan-driven projects, and individual-
centric leaders running agile projects.

Responding to change vs. following
a plan. It is a fundamental difference
between the two project types whether the
team is encouraged to or penalized for
responding to changes. Even though busi-
ness needs, requirements, technologies,
and people are constantly moving these
days, some projects are still fixed in some
combination of time, scope, and cost, and
must operate in the plan-driven range.

Project plan as MFI or MFF. If the
requirements or technologies are likely to
change late in the game or without notice,
or the team does not have experience with
the technology, then it is a poor strategy to
treat the project plan as a MFI issue. In
those situations, the agile leader’s mindset
that the plan is a MFF proposition works
better. The leader allocates energy to
replanning coarsely but frequently.

Design as MFI or MFF. A plan-driv-
en project team, believing that the design
can be worked out in advance (MFI),
expends resources early to gain that infor-
mation and lock down the design. For
those design elements that cannot be fore-
seen (MFF issues), plan-oriented design
teams often design the system so that a
range of future design constraints can be
easily incorporated – expending extra
design energy early in anticipation of hav-
ing a more adaptable design.

Many agile designers find those result-
ing designs overly complicated. Agreeing
that certain issues are MFF issues, they
argue that a better MFF strategy is to make
a simpler design in the first place, with less
built-in flexibility. The saved money can

then be allocated to change the design on
an as-needed basis.

Some agile designers argue that the
MFI component of the design activity is
negligibly small, thus little or no effort
should be expended on anticipated design
changes.

Serial vs. concurrent development.
There is a fundamental difference in the
strategies applied when agility is a priority
compared with when cost is the priority.
As Principle No. 8 describes, cost-sensitive
projects do better with serial development
when that can be successfully executed.
Unfortunately, there are so many surprises
in projects that it is very difficult to exe-
cute successfully.

Surmountable Differences
Working software vs. comprehensive
documentation. One tends to find more
initiatives for comprehensive documenta-
tion on statistics-, process- and plan-driven
projects, but this is not intrinsic. Many
experienced managers use prototypes, sim-
ulators, and incremental development to
reduce risk and gain early information on
both agile and plan-driven projects, feed-
ing that information into the plan as quick-
ly as possible.

Customer collaboration vs. contract
negotiation. Plan-driven project leaders
clearly can improve their situation by
increasing the collaboration in their cus-
tomer relations, even if they must write
and enforce contracts. This is a case in
which plan-driven project leaders can
employ some of the same work practices
as agile project leaders.

Project plan and design on cost-
sensitive projects. A detailed plan does
not, by itself, confer cost savings or safety
to a project. Detailed plans and detailed
designs enable an estimable base-line cost.
The manager can then tell if the cost is
going up or down over time. It is not the

C
om

pl
et

en
es

s,
 S

ta
bi

lit
y

Time

Requirements
Gatherer

Designer

DBA

Figure 3: Completeness and Stability Over Time

Note: The designer-programmer benefits the
schedule by starting earlier and accepting more
rework [2].

Software Engineering Technology

12 CROSSTALK The Journal of Defense Software Engineering November 2002

detail of the plan, but successful applica-
tion of MFF and MFI decisions that
makes the difference in the result.

Borrowing From Agile
Drawing from the above, we see that the
plan-driven project can streamline its
development operations, improve pre-
dictability, and hedge its bets by borrow-
ing in various ways from the agile
approach. Following are examples of
these.

Streamlining
A plan-driven project leader should still
try to hit the six sweet spots: dedicated,
experienced and collocated staff; using
automated regression test suites; having
easy access to knowledgeable users; and
showing and delivering incrementally
growing, running, tested systems to them
regularly.

In addition to these, the project mem-
bers can question to what extent they can
lower the documentation burden through
a more informal information exchange.

Improving Predictability
Good project leaders already use proto-
types, simulators, and incremental devel-
opment to get early information on their
project. However, in my experience, many
leaders of plan-driven projects do not
avail themselves of these techniques,
which are standard business among agile
developers.

Of the above techniques, the most
important for the plan-driven team to
adopt is incremental development. By
delivering a few increments, the leader
gains invaluable information about this
team, this problem, and this technology.
That data are more appropriate to the
project plan than estimates from other
people working on other problems in
other technology.

Hedging Bets
Surprises can show up even on a plan-
driven project. Based on where they esti-
mate those surprises are, the plan-driven
project leaders can incorporate some of
the agile mindset into their strategy. Once
again, the use of incremental development
is key. The delivery, or even just integra-
tion, of each increment offers the team a
chance to deal with whatever surprise
showed up, whether in the requirements,
the technology, or the process. The other
technique to borrow is concurrent devel-
opment, which offers a way to speed
development and respond to late-breaking
changes.

Lowering Costs
Customer collaboration over contract
negotiation. The most important agile
value for the cost-sensitive project leader
to adopt is customer collaboration. When
told that varying a requirement converts
an expensive design into a simple, inex-
pensive one, a customer often is willing to
change the requirements to allow the less
expensive design. To the extent that the
customer and the development team are
on good terms, this happens more often.

Working software over comprehen-
sive documentation. Tacit knowledge
and informal communication are much
less expensive than complete documenta-
tion. The cost-sensitive project will play a
game of documentation brinkmanship,
creating only minimal documents needed
to keep the project from falling apart.

Responding to change vs. follow-
ing a plan. Optimizing from an accurate
plan is clearly a winning strategy. The only
time that responding to change is advanta-
geous to a cost-sensitive project team is
when they discover a shortcut later in the
project. At that point, they obviously ben-
efit from changing the plan.

Summing Up
Agile teams put more emphasis on the
ideas presented in this two-part article
than do plan-driven teams. Most of the
ideas are not particularly new. What is sur-
prising is the extent to which these known,
old practices are ignored. It is sobering to
re-read the paper, “Disciplines Delivering
Success,” presented at the 1997 Software
Technology Conference in Salt Lake City
[7] in which Brown points out the follow-
ing: “project-saving disciplines ignored by man-
agement: good personnel practices, plan-
ning and tracking using activity networks
and earned value, incremental release
build plan, formal configuration manage-
ment, test planning and project stability,
and metrics.”

Of all the practices, the agile strategy
of using concurrent development is
intrinsically in opposition to cost-mini-
mization under predictable circumstances.
However, cost-sensitive project teams can
benefit from all four of the agile values
and all six of the project sweet spots.
Customer collaboration and making good
use of close, informal communications
are key among those.

Of the differences between develop-
ment styles, agile developers typically
believe that software development is not
amenable to statistical process control,
and so heuristic project controls must be
used.◆

References
1. Cockburn, A. “Learning From Agile

Software Development – Part One.”
CrossTalk Oct. 2002: 10-14.

2. Cockburn, A. Agile Software
Development. Boston: Addison-
Wesley, 2001.

3. Goldratt, E. The Goal. Great Barring-
ton: North River Press, 1992.

4. Goldratt, E. Theory of Constraints.
Great Barrington: North River Press,
1990.

5. DeMarco, T., and T. Lister. Peopleware:
Productive Projects and Teams. 2nd
Ed. New York: Dorset House, 1999.

6. Herring, R., and M. Rees. Internet-
Based Collaborative Software Develop-
ment Using Microsoft Tools.
Proceedings of the 5th World
Multiconference on Systemics, Cyber-
netics and Informatics. Orlando,
Florida. July 2001: 22-25 <http://
erwin.dstc.edu.au/Herring/Software
Engineering0verInternetSCI2001.pdf>.

7. Brown, N. “Disciplines Delivering
Success.” Software Technology
Conference, 1997 <http://stc-online.
org/cd-rom/1997/track1.pdf>.

About the Author
Alistair Cockburn, an
internationally recog-
nized expert in object
technology, methodolo-
gy, and project manage-
ment, is a consulting fel-
low at Humans and

Technology with more than 20 years
experience. He is one of the original
authors of the Agile Software
Development Manifesto and founders
of the AgileAlliance, and is program
director for the Agile Development
Conference held in Salt Lake City.

1814 Fort Douglas Circle
Salt Lake City, UT 84103
Phone: (801) 582-3162
Fax: (775) 416-6457
E-mail: alistair.cockburn@acm.org

Call for Conference
Participation

The Agile Development Conference
is seeking people to give tutorials, host
workshops, or submit field reports or
research papers at the conference June
25-28, 2003 in Salt Lake City. More infor-
mation is available at <www.agiledevelop
mentconference.com>.

